

Efficient lithium-ion battery pack electro-thermal simulation

Lucas Kostetzer, M. Eng

ANSYS Competence Center FEM

Introduction

Li-ion batteries are temperature sensitive

- Battery pack needs active cooling/heating
 - Efficient energy usage
 - Control systems
- Reduce the prototype efforts:
 - Simulation aided design

CA

Outline

- Traditional thermal modeling approach
- Efficient simulation with Model Order Reduction
- Electro-thermal battery pack simulation
- Summary

Thermal simulation

- Heat transfer phenomena
 - Heat conduction,
 - Radiation
 - Convection (fluid flow)

CFD/FEM

Standard tool for Industry

1. D. Ghosh, P. D. Maguire, and D. X. Zhu, "Design and CFD Simulation of a Battery Module for a Hybrid Electric Vehicle Battery Pack," SAE 2009-01-1386 2. D. Ghosh, K. King, B. Schwemmin, D. Zhu, "Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing," SAE 2010-01-1080

Drage, P., Kussmann, C., Jagsch, S., " Simulating Thermal Management of Battery Modules for Propulsion of Hybrid Vehicles. EAAC 2007

Battery Thermal Management > Simulation challenge

FEM transient CPU costs

- 5 min per time step (1000k nodes) (intel i7, 4 cores)
- ~1000 time steps = 80hrs!

Low CPU cost is needed >Reduced order thermal model

Bring 3D thermal model to system level

MOR for ANSYS: <u>http://ModelReduction.com</u>

 $E\dot{\mathbf{x}} + K\mathbf{x} = B\mathbf{u}$

 $\mathbf{x} = V\mathbf{z} + \varepsilon$ $\mathbf{x} = V$

$$E + K \cdot = F$$

$$V^{T}EV\dot{\mathbf{z}} + V^{T}KV\mathbf{z} = V^{T}B\mathbf{u}$$

$$E_r$$
 · + K_r · = F_r ·

- Advantage:
 - NO transient solution with the original FEM model is necessary
 - Highly accurate (linear systems)
 - As accurate as the original FEM model

MOR in Modern Mathematics

CADFE

Battery pack FE thermal model in ANSYS WB

CADFEM

FEM analysis

What one can get?

- Field of
 - Temperature
 - Heat flux
- Total heat fluxes...

CPU costs

- Mesh:150k nodes
- CPU cost per time/load step :~31s

Unit: °C

Min: 0

Time: 5000

n

MOR - preparation

Terminal concept (IN/OUT)

Battery reduced order model

ROM

- 10 inputs /outputs
- Dimension : 100 (from original 150.000)
- Solved in ANSYS Simplorer

Verification case

Verification case – ROM vs Full (ANSYS)

Error=abs((y-yref)/yref)*100

Fixed time step: 1s, Total time: 3600s Full (ANSYS) CPU time: 47750s (13.2hrs) ROM CPU time: **35.9s**

Speedup solution factor: 1300x faster Error smaller than 2%

Electro-thermal battery pack model

- Vehicle Power Train Model (EV)
 - 1150 kg, 42kW motor
 - Drive train model
 - FTP75 drive cycle

Results over EV onver FTP 75 drive cycle

Potential ElectroThermal Simulation 21.00 Physical time: 5000s Curve Info Pack t<1800s (FTP75) 19.00 TR ∑ ŏ17.00 · d Cooling phase CPU time: 166s 15.00 13.00 1000.00 2000.00 3000.00 4000.00 0.00 5000.00 Time [s]

Summary

- Projection via Krilov subspaces are efficient and accurate
 - Differences of full (FEM) vs ROM are under 2%
 - Speedup of 1300x

 Battery pack thermal responses in complete drive cycles are simulated in a minute scale
Control design and complete simulation

Method for accurate electro-thermal system level design

• IGBT's, MEMS, Sensors,

Thank you for your attention

Contact:

Lucas Kostetzer

<u>lkostetzer@cadfem.de</u> <u>www.cadfem.de</u>

